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Abstract. This article investigates the problems of finding and analyzing exact 

solutions of some partial differential equations (PDEs). In the course of the study, classical 

solution methods for first- and second-order partial differential equations were applied, 

including the method of separation of variables, the method of characteristics, and the Fourier 

method. The significance of the obtained exact solutions in mathematical modeling, the 

description of physical processes, and the solution of engineering problems is substantiated. 
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AYRIM XUSUSIY HOSILALI DIFFERENSIAL TENGLAMALARNING 

ANIQ YECHIMLARINI TADQIQ QILISH 

 

Annotatsiya: Mazkur maqolada ayrim xususiy hosilali differensial tenglamalarning 

(XHDT) aniq yechimlarini topish va ularni tahlil qilish masalalari o‘rganiladi. Tadqiqot 

jarayonida birinchi va ikkinchi tartibli xususiy hosilali differensial tenglamalar uchun 

klassik yechish usullari — ajratish usuli, xarakteristikalar usuli hamda Furye usulidan 

foydalanildi. Olingan aniq yechimlarning matematik modellashtirishda, fizik jarayonlarni 

tavsiflashda va muhandislik masalalarini hal etishdagi ahamiyati asoslab berildi. 

Kalit so‘zlar: xususiy hosilali differensial tenglama, aniq yechim, xarakteristikalar 

usuli, Furye usuli, matematik modellashtirish. 

 

ИССЛЕДОВАНИЕ ТОЧНЫХ РЕШЕНИЙ НЕКОТОРЫХ УРАВНЕНИЙ В 

ЧАСТНЫХ ПРОИЗВОДНЫХ 

 

Аннотация. В данной статье рассматриваются вопросы нахождения и 

анализа точных решений некоторых уравнений в частных производных (УЧП). В 

процессе исследования для уравнений в частных производных первого и второго 

порядков были использованы классические методы решения — метод разделения 

переменных, метод характеристик и метод Фурье. Обоснована значимость 
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полученных точных решений в математическом моделировании, описании 

физических процессов и решении инженерных задач. 

Ключевые слова: уравнение в частных производных, точное решение, метод 

характеристик, метод Фурье, математическое моделирование. 

 

INTRODUCTION 

Partial differential equations are a key area of modern mathematical 

analysis; they are widely used in many fields of science, including physics, mechanics, 

heat transfer theory, hydrodynamics, and quantum mechanics. These equations are 

used to construct mathematical models of complex natural and technical processes 

and analyze their properties. 

In some cases, exact solutions to partial differential equations can be found, 

and such solutions provide a profound understanding of the qualitative aspects of the 

processes being studied. Furthermore, exact solutions serve as benchmarks for 

verifying results obtained using numerical and approximate methods. Therefore, the 

study of exact solutions to partial differential equations is a pressing scientific 

problem. 

The main objective of this article is to analyze methods for finding exact 

solutions for some types of partial differential equations and to highlight their 

theoretical and practical significance. 

METHODS 

The following scientific and methodological approaches were used during the 

study: 

Method of theoretical analysis— Study of scientific literature and classical 

works on the theory of ITS; 

separation method— search for a solution as a product of independent 

variables; 

Method of characteristics— reduce first-order differential equations to 

ordinary differential equations; 

Fourier method— construct exact solutions to boundary value problems using 

series; 
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Comparison and generalization— evaluate the effectiveness of various 

methods. 

Classification of equations 

A second-order partial differential equation with two independent variables 

is called... ( ),u x y The relationship between an unknown function and its partial 

derivatives up to and including the second order (in which case one of the second 

order derivatives must be present), which is usually called 

2 2 2

2 2
, , , , , , , 0

u u u u u
F x y u

x y x x y y

     
= 

        

It is written in the form where F is a given function of its arguments. 

2 2 2

11 12 22 12 2
2 , , , , 0

u u u u u
a a a F x y u

x x y y x y

     
+ + + = 

            (1.1) 

An equation of the form is called a linear equation with respect to higher-

order derivatives. In this case
11 12 22

, ,a a a chances ,x y are functions of , at least one of 

which is nonzero. If these coefficients are also functions of x, y ,
x

u u And
y

u If is also a 

function of , then equation (1.1) is called a quasilinear equation. 

If the terms of the equation that do not contain higher-order derivatives are 

also linear, that is, (1.1) is 

2 2 2

11 12 22 13 23 332 2
2 0

u u u u u
a a a a a a u f

x x y y x y

    
+ + + + + + =

         (1.2) 

(1.1) is called a linear equation if it has the form
11 12 22 13 23, 33

, , , ,a a a a a a And f

With ,x y are functions of ; if the coefficients of the equation ,x y If an equation does 

not depend on , it is said to have constant coefficients. In the equation ( ), 0f x y =  If 

, the equation is called homogeneous. 

If we replace the variables in equation (1.2) with ( , )x y = And ( , )x y = If 

we make a substitution based on equalities, we obtain a new equation equivalent to 

the previous one. 
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Recall that when substituting into an equation, second-order derivatives do 

not appear from terms that do not contain second-order derivatives; if these terms 

are linear, they remain linear, that is, after substitution. 

13 23 33
, , , ,

u u u u
F x y u a a a u f

x y x y

    
= + + + 

      

facial expression again 

13 23 33, , , ,
u u u u

F u a a a u f 
   

    
= + + + 

      

It appears here.
13 23 33

, , ,a a a f − And functions of variables. Therefore, 

in the future we will use the compact form of these terms instead of the expanded 

expression, that is, we will deal with an equation in the form (1.1). 

Now we can ask the following question: how, when changing variables, does 

an equivalent equation become simpler than the previous one? 

To answer this question, we take into account the above considerations and 

replace the variables in equation (1.1). In this case, ( ),u x y derivatives of a function 

through new variables 

u u u

x x x

 

 

    
= +

     ,  

u u u

y y y

 

 

    
= +

     , 

2 22 2 2 2 2 2

2 2 2 2 2
2

u u u u u u

x x x x x x x

     

     

              
= + + + +   

                , 

2 2 2 2 2 2

2 2
,

u u u u u u

x y x y x y y x x y x y x y

         

     

                
= + + + + + 

                      

2 2
2 2 2 2 2 2

2 2 2 2 2
2

u u u u u u

y y y y y y y

     

     

              
= + + + +   

                , 

is determined by equations (1.1) 

2 2 2

11 12 22
2 2

2 , , , , 0
u u u u u

a a a F u 
     

     
+ + + = 

         (1.3) 

appears in the field of view. In this 
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22

11 11 12 22
2a a a a

x x y y

        
= + +   

       , 

12 11 12 22
a a a a

x x x y x y y y

               
= + + + 

         ,   (1.4) 

22

22 11 12 22
2 .a a a a

x x y y

        
= + +   

        

To simplify equation (1.1) to (1.3), we need to change variables so that 11 12,a a

And 22a Let one or two (but not all three) coefficients be zero. To solve this problem, 

consider the following two lemmas. 

 Lemma 1.If ( , )z x y= this function 

22

11 12 22
2 0

z z z z
a a a

x x y y

     
+ + =   

          (1.5) 

is one of the particular solutions of the equationIf, ( , )x y C = expression 

( ) ( )
2 2

11 12 22
2 0a dy a dx dy a dx− + =

   (1.6) 

will be a general integral of an ordinary differential equation of the form 

Lemma 2.If ( , )x y C = expression(1.6) is the general integral of an ordinary 

differential equation, ( , )z x y= functionwill be a particular solution of equation (1.5). 

Proof of the first lemma.According to the condition of the lemma ( , )z x y= a 

function at an arbitrary point of a given domain without loss of generality
'

0
y

 

Considering that from the last equality 

2 2

11 12 22
( ) 2 ( ) 0

x x y y
a a a   + + = ,   (1.71) 

 

2

11 12 22
2 0x x

y y

a a a
 

 

   
− − − + =   

   
       (1.72) 

We will achieve equality. 
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( , )x y C = To obtain the general integral of equation (1.6), it can be written 

in explicit form. ( , )y f x C= The function must satisfy (1.6). ( , )x y C = from 

( , )

( , )

x

y

dy x y

dx x y




= −

 

If we substitute this into (1.6), then from (1.72) we get 

2
2

11 12 22 11 12 22
2 2 0x x

y y

dy dy
a a a a a a

dx dx

 

 

      
− + = − − + =                  . 

This proves Lemma 1. 

Now let us prove the second lemma. ( , )x y C = Let (1.6) be the general 

integral of equation (1.71). Then equality (1.71) takes the form ( , )x y C = any from 

the detection zone ( , )x y Let us prove that this is true for . ( , )x y C = Since the 

general integral (1.6) is equal to 

2
2

11 12 22 11 12 22
2 2 0x x

y y

dy dy
a a a a a a

dx dx

 

 

      
− + = − − + =                   

The equality holds. This means that equality (1.71) holds. This also proves 

Lemma 2. 

Equation (1.6) is the characteristic equation of equation (1.1), and the 

integrals of this equation are called the characteristics of equation (1.1). Equation 

(1.6) is defined as follows: ( ),dx dy The direction of vector (1.1) is called the 

characteristic direction of equation (1.1). 

Therefore, according to Lemmas 1 and 2, ( , )x y C = When one of the integrals 

of equation (1.6) is equal to, ( , )x y = If we take, then in equation (1.3)

2

2

u






since the 

coefficient in front of it becomes equal to zero, that is, 11 0a = will be; also, ( ) Cψ x, y =

If the second integral of equation (1.6) is equal to ( , )x y = if we take this as,

2

2

u







The coefficient in front of it also becomes equal to zero, that is, 22 0a = will.   
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The characteristic equation is decomposed into the following two ordinary 

differential equations of the first order: 

2 2

12 12 11 22 12 12 11 22

11 11

,
a a a a a a a ady dy

dx a dx a

+ − − −
= =

  (1.8) 

Depending on the sign of the expression under the root in these equations, 

equation (1.1) is divided into types. 

If at point M
2

12 11 22
0a a a−  If , then equation (1.1) is called a hyperbolic 

equation at point M. 

If at point M
2

12 11 22
0a a a− = If , then equation (1.1) is called a parabolic 

equation at point M. 

RESULTS 

The following results were obtained during the study: 

Using the method of characteristics, exact solutions of linear partial 

differential equations of the first order were found, and their geometric interpretation 

was also shown. 

For second-order parabolic equations (e.g., heat equations), exact solutions 

were obtained using Fourier series. 

Using the separation method, classical exact solutions of the wave equation 

were obtained. 

The dependence of the obtained solutions on the initial and boundary 

conditions was analyzed. 

The results showed that exact solutions play an important role in determining 

qualitative aspects (stability, symmetry, periodicity) of physical processes. 

DISCUSSION 

The obtained results confirm the importance of exact solutions to partial 

differential equations in solving theoretical and practical problems. In particular, 

exact solutions serve as a benchmark for verifying and comparing results obtained 

using numerical methods—the difference method and the finite element method. 

At the same time, it was established that exact solutions are impossible for 

all partial differential equations, and it was noted that approximate and numerical 
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methods must be used to describe many real-world processes. However, careful study 

of cases where exact solutions exist will improve the reliability of mathematical 

modeling. 

CONCLUSION 

This article examines the problems of finding and analyzing exact solutions 

to certain partial differential equations. The results demonstrate the importance of 

exact solutions in studying the theory of partial differential equations and expand 

their application in both educational and practical applications. 
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